Surface Subdivision Schemes Generated by Refinable Bivariate Spline Function Vectors
نویسندگان
چکیده
Abstract The objective of this paper is to introduce a direct approach for generating local averaging rules for both the √ 3 and 1-to-4 vector subdivision schemes for computer-aided design of smooth surfaces. Our innovation is to directly construct refinable bivariate spline function vectors with minimum supports and highest approximation orders on the six-directional mesh, and to compute their refinement masks which give rise to the matrix-valued coefficient stencils for the surface subdivision schemes. Both the C1-quadratic and C2-cubic spaces are studied in some detail. In particular, we show that our C2-cubic refinement mask for the 1-to-4 subdivision can be slightly modified to yield an adaptive version of Loop’s surface subdivision scheme.
منابع مشابه
Refinable bivariate quartic and quintic C2-splines for quadrilateral subdivisions
Refinable compactly supported bivariate C quartic and quintic spline function vectors on the four-directional mesh are introduced in this paper to generate matrix-valued templates for approximation and Hermite interpolatory surface subdivision schemes, respectively, for both the √ 2 and 1-to-4 split quadrilateral topological rules. These splines have their full local polynomial preservation ord...
متن کاملMatrix-valued subdivision schemes for generating surfaces with extraordinary vertices
Subdivision templates of numerical values are replaced by templates of matrices in this paper to allow the introduction of shape control parameters for the feasibility of achieving desirable geometric shapes at those points on the subdivision surfaces that correspond to extraordinary control vertices. Formulation of the matrix-valued subdivision surface is derived. Based on refinable bivariate ...
متن کاملMultivariate refinable Hermite interpolant
We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We also study a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easyto-use constructio...
متن کاملMultivariate Refinable Hermite Interpolants
We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We study also a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easy-to-use constructi...
متن کاملAnalysis of Optimal Bivariate Symmetric Refinable Hermite Interpolants
Multivariate refinable Hermite interpolants with high smoothness and small support are of interest in CAGD and numerical algorithms. In this article, we are particularly interested in analyzing some univariate and bivariate symmetric refinable Hermite interpolants, which have some desirable properties such as short support, optimal smoothness and spline property. We shall study the projection m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003